X Efficient Voting via The Top-k Elicitation Scheme: A Probabilistic Approach

نویسندگان

  • Yuval Filmus
  • Joel Oren
چکیده

Top-k voting is a common form of preference elicitation due to its conceptual simplicity both on the voters’ side and on the decision maker’s side. In a typical setting, given a set of candidates, the voters are required to submit only the k-length prefixes of their intrinsic rankings of the candidates. The decision maker then tries to correctly predict the winning candidate with respect to the complete preference profile according to a prescribed voting rule. This raises a tradeoff between the communication cost (given the specified value of k), and the ability to correctly predict the winner. We focus on arbitrary positional scoring rules in which the voters’ scores for the candidates is given by a vector that assigns the ranks real values. We study the performance of top-k elicitation under three probabilistic models of preference distribution: a neutral distribution (impartial culture); a biased distribution, such as the Mallows distribution; and a worst-case (but fully known) distribution. For an impartial culture, we provide a technique for analyzing the performance of top-k voting. For the case of arbitrary positional scoring rules, we provide a succinct set of criteria that is sufficient for obtaining both lower and upper bounds on the minimal k necessary to determine the true winner with high probability. Our lower bounds pertain to any implementation of a top-k voting scheme, whereas for our upper bound, we provide a concrete top-k elicitation algorithm. We further demonstrate the use of this technique on Copeland’s voting rule. For the case of biased distributions, we show that for any non-constant scoring rule, the winner can be predicted with high probability without ever looking at the votes. For worst-case distributions, we show that for exponentially decaying scoring rules, k = O(logm) is sufficient for all distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Vote Elicitation under Candidate Uncertainty

Top-k voting is an especially natural form of partial vote elicitation in which only length k prefixes of rankings are elicited. We analyze the ability of top-k vote elicitation to correctly determine true winners, with high probability, given probabilistic models of voter preferences and candidate availability. We provide bounds on the minimal value of k required to determine the correct winne...

متن کامل

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

Vote Elicitation with Probabilistic Preference Models: Empirical Estimation and Cost Tradeoffs

Abstract. A variety of preference aggregation schemes and voting rules have been developed in social choice to support group decision making. However, the requirement that participants provide full preference information in the form of a complete ranking of alternatives is a severe impediment to their practical deployment. Only recently have incremental elicitation schemes been proposed that al...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

An Effective and Optimal Fusion Rule in the Presence of Probabilistic Spectrum Sensing Data Falsification Attack

Cognitive radio (CR) network is an excellent solution to the spectrum scarcity problem. Cooperative spectrum sensing (CSS) has been widely used to precisely detect of primary user (PU) signals. The trustworthiness of the CSS is vulnerable to spectrum sensing data falsification (SSDF) attack. In an SSDF attack, some malicious users intentionally report wrong sensing results to cheat the fusion c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014